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Abstract—Organizations are adopting virtualization technol-
ogy to reduce the cost while maximizing the productivity, flexibil-
ity, responsiveness, and efficiency. There are a variety of vendors
for the virtualization environments, all of them claim that their
virtualization hypervisor is the best in terms of performance.
Furthermore, when a system administrator or a researcher want
to deploy a virtual machine in a cloud environment, which
vCPU-VM configuration is the best for better performance? In
this paper, prior to evaluating the latest version of hypervisors
(commercial and open source), the best virtual CPU to virtual
machine (vCPU-VM) configuration as well as the effect of virtual
CPUs on performance is analyzed for each hypervisor. We
used Phoronix Test Suite (PTS) benchmarking tool as a traffic
generator and analyzer. The results have shown that commercial
and open source hypervisors have similar performance. As per
our observation, the performance of a system would degrade by
improper allocation of vCPUs to VMs, or when there is a massive
over-allocation of vCPUs.

Index Terms—cloud computing, hypervisor, virtual CPU map-
ping, CPU utilization

I. INTRODUCTION

Traditional data centers suffer from server proliferation, low
resource utilization, increased physical infrastructure costs,
decreased scalability and agility, diminished disaster recovery,
and migration challenges [1], [2]. Virtualization is used to
ease computing resource management, resource utilization and
running multiple heterogeneous or homogeneous operating
systems on a single physical machine. In the last decade,
virtualization has attracted many different research groups
working on server consolidation, security, and computing [3],
[4], [5]. For example, distributed data centers are now being
utilized by using virtualization technology which was not
possible in the past. Thus, virtualization plays a vital role
in mitigating such challenges [6], [7]. Virtualization makes
use of server resources in a well-organized manner by setting
up different servers within different cloud types [2]. As a
result, organizations can access and manage their data more
efficiently. Therefore, many organizations are adopting virtu-
alization technology to reduce the cost while maximizing the
productivity, flexibility, responsiveness, and efficiency.

Virtualization can be done to various resources such as
CPU, memory, or I/O devices. Virtualization vendors use
different technologies to provide virtualization environments.
Hypervisors are used in virtualized environments as agents

facilitating virtual machines and hardware [8], [9], [10], [11].
In a regular system, the hardware resources are used by
single operating system (OS). While in virtualization en-
vironments, hypervisor is responsible to manage hardware
resources and virtual machines. Moreover, each guest OS is in
charge of virtual resources and concurrently share and access
the hardware resources [4]. Therefore, virtualization systems
face challenges such as hypervisor selection, virtual machines
(VMs) allocation, virtual CPU to Virtual Machine (vCPU-VM)
configuration, and virtual CPU to physical CPU (vCPU-pCPU)
mapping. Such challenges may lead to system performance
degradation [12], [13], [14].

We were motivated by the fact that virtualization suffers
from drawbacks. In addition, researchers evaluate and analyze
hypervisors without investigating the best vCPU-VM configu-
ration through which better CPU utilization and performance
for each hypervisor can be expected. They assigned vCPU
to VM based on non-suitable vCPU-VM configuration [9],
[15], [16], [17]. Furthermore, there are a variety of vendors
for the virtualization environments and all of them claim
that their virtualization hypervisor is the best for virtualized
environments , however they depend on the used application
[18], [19], [20].

The main contributions of of the paper are as follows.
Building a private cloud using the latest version of commercial
and open source hypervisors (Citrix xenServer version 7.4 and
KVM version 4.4.0). In this research work, we focus on the ef-
fect vCPU on performance prior to evaluating commercial and
open source hypervisors. As another contribution, we provide
recommendations for vVCPU-VM configuration through which
better CPU utilization on each hypervisor can be achieved. As
a result, cloud service providers will get the benefits, when
they deploy VMs in a cloud environment or evaluate open
source and commercial hypervisors (KVM, Citrix xenServer,
VMware, and Hyper-V). Our finding will be a road map to
assist cloud service providers to choose the best hypervisor
and vCPU-VM configuration for their specific needs.

The rest of the paper is organized as follows. Section II,
provides an extensive literature review. Section III, describes
our research methodology and experimental design. We ana-
lyze the evaluation results in Section IV and draw conclusions
in Section V.



II. RELATED WORK

In this sections, we discuss recently published papers in
order to evaluate different hypervisors and investigate the
impact of vCPU on performance on CPU utilization. Other
factors such as the nature of virtualization type (i.e., para
virtualization, full virtualization, or hardware assistance vir-
tualization) are also investigated and summarized.

Charles David [15] analyzed two types of virtualization
namely paravirtualization (i.e., Xen 3.1.2) and hardware as-
sisted virtualization (i.e., KVM) using open sources virtu-
alization platforms Xen 3.1.2 and KVM (RHEL 5.3 64bit)
hypervisors on Chip Multiprocessor (CMP) Architecture. The
author measured the throughput and overall performance of
the hypervisors using PTS benchmarking tool under various
levels of workload and compared different system attributes
including CPU usage, memory access rate, and I/O operations.
Unfortunately, the author randomly assigned vCPUs to VMs
which caused performance degradation. The author did not
analyze the root cause of the performance degradation.

Babu et al. [16] evaluated the system performance of three
hypervisors. The authors had opted Xen-PV, OpenVZ, and
XenServer for para virtualization, container virtualization, and
full virtualization respectively. They compared the perfor-
mance of these techniques based on Unixbench benchmarking
tool. They observed that the hypervisor which supports full
virtualization has a comparatively higher system performance
in terms of file copy, pipe based context switching, process
creation, shell scripts, and floating point operation than the
other two virtualization types. However, the authors did not
investigated the effects of vCPU-VM and vCPU-pCPU. More-
over, the authors only used one virtual machine for their
evaluation.

C. Mancas [17], used Passmask benchmarking tool and
evaluated VMware and KVM hypervisors for CPU, memory,
and I/O performance. They observed that overall VMware
behaves better than KVM. However, there are cases, such as
memory and HDD in which KVM overtakes VMware. Like
[16], the author used a simple test case in which he used XP
as a guest OS.

S. Varette et al. [9] evaluated energy-efficiency of VMware
ESXi 5, KVM 0.12 and Xen 4.0, using Non-uniform Memory
Access (NUMA) architecture through HPC implementation.
The authors used HPL benchmarking tool and the Grid 5000
platform to investigate the performance of different hyper-
visors in a well-regulated and similar to HPC environment.
The authors concluded that there is a sustainable performance
impact introduced by the virtualization layer across all types
of hypervisors.

Hwang et al. [8] investigated open source and commercial
hypervisors (Hyper-V 2008R2, vSphere 5.0, KVM 2.6.32-279,
and Xen 4.1.2). The authors stated that there is no impact
by increasing the number of virtual CPUs on performance
from one vCPU up to four vCPUs on all hypervisors. In our
work, we will show that there is a high impact of vCPU on
performance.

TABLE I
SPECIFICATION OF THE SERVERS

Specifications Server 1 Server 2
Dell Power Edge | Dell Power Edge R620
R620

Hardware Model Intel Xeon Intel Xeon

Processor Speed 2 GHz 2 GHz

CPU Processor 12 Cores 12 Cores

Logical Processors 24 cores 24 cores

Main Memory 64 GB 64 GB

Storage Capacity 1024 GB 1024 GB

Benchmarking Software

Guest Operating System

3 3
2 e
d -7

Ubuntu 16.04 LTS Ubuntu 16.04 LTS

Virtual Machine

CiTRIX
XenServer

AKVM

Type I Hypervisor

Physical Machines

Fig. 1. Experimental Platform.

As a summary, most of the authors analyzed and compared
various hypervisors without investigated the effect of vCPU-
VM configuration. However, some of them analyzed either
vCPU-VM configuration or vCPU-pCPU mapping by using a
certain hypervisor. In this paper, before evaluating the latest
version of hypervisors (Citrix XenServer version 7.4 and
KVM version 4.4.0) NUMA architecture; firstly, we analyzed
the effects of vCPU on performance along with vCPU-VM
configuration for each hypervisor using NUMA architecture.
Secondly, we investigated the effects of hypervisor and vCPU-
VM configuration on performance.

III. RESEARCH METHODOLOGY AND EXPERIMENTAL
DESIGN

In this section, we describe our experimental methodology
and classification of experiments.

A. Experimental Platform

Our experimental platform, as shown in Fig. 1, starts with
two identical physical servers. The two physical machine have
similar architecture and specifications in order to achieve a
fair assessment. Each physical node (Dell Power Edge R620)
is equipped with two Intel Xeon hexacore CPU and 64 GB
of DDR2 DRAM. The specification of these two servers are
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Fig. 2. Classification of experiments (experimental design).

given in Table I. We installed the latest versions of hypervisors
(Citrix XenServer version 7.4 and KVM version 4.4.0) on the
physical servers. Next, we created virtual machines running
Ubuntu 16.04 as a guest operating system. We built virtual
machines on each hypervisor in order to provide the test
environment. Finally, the PTS benchmarking tool is installed
on each virtual machine as a traffic generator and analyzer.

B. Classification of experiments

There are many factors in the platform to affect the CPU
performance, such as the degree of overcommitment (that is,
the ratio of vCPU-to-pCPU), the number of virtual machines
concurrently running at the top of hypervisor, mapping strategy
(static or dynamic allocation of vCPU-to-pCPU, and the
workload or application running inside of VM. This evaluation
is composed of two main experiments; Citrix XenServer-based
setup and KVM-based setup as shown in Fig. 2. We have
four main factors in our experimental design namely: type
of hypervisor, VMs, vCPUs, and workload. The objectives
of these test configurations are to investigate the effects of
hyperviosr, VM, and vCPU on performance prior to evaluating
different hyperviosrs.

In order to evaluate CPU utilization in a Cloud environment
clearly, various experiments were conducted. We first investi-
gate the effect of virtualization technology layer. Secondly, to
systematically investigate the effect of VMs on performance,
we performed three main experiments: under allocation (i.e.,
the number of vCPUs less than available logical CPUs),
balance allocation (i.e., equally divided available logical CPUs
among VMs), and over allocation (the number of vCPUs
more than available logical CPUs) of computing resources. To
investigate and choose the best vCPUs-VMs configuration and
better CPU utilization, we also focused our test measurement

with some restrictions, e.g., we scale the number of vCPUs
from 2 to 32 (2, 4, 8, 12, 16, 20, 24, 28, and 32), and
concurrently boot 1, 2, 4, 6, 8, and 12 VM.

For every experiment setup, six test cases and nine vCPU-
VM configurations are presented. Fig. 2, illustrates the exper-
imental design and the details of each test configuration. In
Fig. 2, there are two different hypervisors, each hypervisor
has six different test cases. Each test case has nine different
deployments i.e., allocation of vCPUs to VMs. In every
deployment, we run N-Queens benchmark for sixteen different
workloads. In order to evaluate the effect of virtualization
technology and vCPU-VM configuration, total 1728 (2 x 16 x
6 x 9) observations were obtained where (2) is the number of
hypervisors used in our experiments, (16) represents different
workloads, (6) shows different test cases of VMs running on
top of each hypervisor, and (9) represents different vCPU-VM
configurations.

Each experiment is conducted on an identical separate
server. Therefore, all the hardware resources of the server are
fully dedicated for each hypervisor and the results obtained
are fairly and reliably analyzed.

C. Benchmarking Tools

The benchmarks used in our experiments are PTS [21] and
Linux Top Command. PTS is used to generate the workloads
and analyze the results for CPU utilization. PTS contains
a variety of test profiles. For CPU bound operations, we
chose two important test profiles called N-Queens and John-
the-Ripper benchmarks. Based on elapsed time in seconds,
different workloads (low, medium, and high) were generated
using N-Queens benchmark [21], which report the elapsed
time in seconds. In addition, we measured the CPU utilization
at hypervisor level for both hypervisors using Linux Top
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command. Furthermore, for each experiment, the average CPU
utilization in percentage at hypervisor level is measured using
Linux Top Command. But, only CPU utilization in percentage
is insufficient to investigate the effects of VMs allocation,
vCPU-VM configuration, and vCPU-pCPU mapping on per-
formance, especially when the CPU utilization level is 100%.
Then, we can not judge the effect of VMs on performance.
Therefore, the elapsed time to solve the N-Queens problem
was calculated to trace how much actual work is performed
by CPU.

N-Queens is an open-source OpenMP benchmarking tool
[21] that solves the N-Queens problem. N-Queens problem
is a classical combinatorial problem, widely used as a bench-
marking tool by researchers for CPU-intensive calculation that
have different workloads and simple structure [22], [23]. The
problem involves placing N queens on an N x N chessboard
such that no queen can attack any other. Thus, a solution
requires that no two queens share the same row, column, or
diagonal. As the problem size increases (number of queens),
the corresponding possible solutions and the elapsed time to
solve the problem also increasing. In this paper, we tested
each hypervisor for different queens size ranges from 4 to 19.
Based on the possible solutions to solve N-Queens problem
and corresponding elapsed time, we chose problem size 17,
18, and 19 as low, medium, and heavy workload respectively.

IV. RESULTS AND DISCUSSION

In this section, the results have been discussed that were
obtained using the PTS benchmarking tool. Each experiment
was repeated five time and the results are averaged. The
objectives of these experiments are to investigate the effects
of hyperviosr and vCPU on performance prior to evaluate
different hypervisors. The experimental results are shown in
Figures 3 - 13.

A. The Effect of Virtualization Technology

This test is designed to investigate the effect of virtualization
technology layer (hypervisor) on performance in terms of CPU
bound operations. For this test, only one VM allocated 24
vCPUs (e.g., all the hardware resources of the server are
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Fig. 4. The effect of Virtualization Layer using John-the-Ripper benchmark.

allocated to one VM), having Ubuntu 16.04 as a guest OS,
running at the top of both hypervisors, as well as a host
OS on a bare-metal machine (i.e., non virtualized machine
(No_VT)). This test is performed using two powerful servers,
server specifications are given in Table L.

In this experiment, the N-Queens benchmark is used as
a stress test to judge the virtualization overhead for CPU
bound operations running one VM. The performance (elapsed
time) of non virtualized machine against commercial and
open source hypervisor are given in Fig. 3 and 4. Fig. 3,
illustrates the effect of virtualization on performance using
three different workloads (17, 18, and 19; which is low,
medium, and high workload) of N-Queens benchmark. The
results illustrate that for low and medium workload there is
no significant performance overheard but for heavy workload
a low performance overhead is observed i.e., performance is
decrease by 0.01% and 0.04% using Citrix XenServer and
KVM respectively. One of the reason of performance reduction
for heavy workload is that when we used heavy workload there
are more context switching due to high elapsed time (i.e.,
CPU cycle are wasted instead of being utilized by vCPUs)
and NUMA processor affinity between vCPUs as compared
to low and medium workload.

To ensure that the CPU utilization (i.e., elapsed time) seen
with N-Queens benchmark was not an anomaly, John-the-
Ripper benchmark (for CPU bound operation) is used as a
benchmark with the same settings. Fig. 4, shows the result
of Jon-the-ripper benchmark. Both benchmarks were run six
times, and the results were averaged (the results were exactly
the same for Fig. 3 therefore there is no error bar for each
scenario). Both results illustrated that for CPU bound opera-
tions using only one VM and consuming all CPUs cores, the
virtualization overhead is almost minimal and the performance
of commercial and open source hypervisor are almost similar.

B. The Effect of Virtual CPUs on Performance

The cloud service providers are interested to know how
much resources (vCPUs-VMs) should be allocated for maxi-
mum performance. Since large number of VMs are running in
cloud environment and sharing physical computer resources,



2500

h
A
A
A
-
A
A
A
A

2000

v
v
v

1500

1000

500

Average Elapsed Time (sec) per VMs

~
@
I

16
vCPUs per VMs

Fig. 5. The effect of Virtual CPUs on Performance - Citrix xenServer.

2500

A
A

.

A
A
A
A
4
A

2000

A 4
v
v

1500

1000

Average Elapsed Time (Sec) per VMs

500

IS
@

12

16 20 24 28 32
vCPUs per VMs

Fig. 6. The effect of Virtual CPUs on Performance - KVM.

a risk of poor performance arises due to over allocation of
physical CPU (pCPU) resources. These performance bottle-
necks should be investigated, quantified, and avoided.

Here, we are testing the impact of vCPU assigned to
VM. Previous studies [14], [24] showed that the system
performance could be affected by using different ways of the
pCPUs. Each virtual machine is configured with a number
of vCPUs. The performance of a VMs having eight vCPUs
will be doubled as compared to four vCPU-VM configuration
(e.g., balance and under allocation). One can decide to use
available pCPUs in two opposite ways such as by using few
VMs having large number of vCPUs, or large number of VMs
having small number of vCPU.

Figures 5 and 6, show the elapsed time in second for
different vCPUs configurations (i.e, CPU-VM configuration
are 2, 4, 8, 12, 16, 20, 24, 28, and 32 vCPUs) using heavy
workload (problem size 19). In both figures, the number of
active VMs increases from 1 to 12 with nine different vCPUs-
VM configuration. From both figures, it is clearly seen that, the
performance is improved by allocating more vCPUs to VMs.
However, there is a performance threshold for vCPUs i.e, 24
out of 24 logical CPUs are consume. After the threshold,
no significance improvement was observed. However, the
performance was decreased after crossing the threshold.
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Fig. 7. Total CPU Utilization at Hypervisor Level - Citrix xenServer.
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In one VM test case, the effect of over allocation of vCPUs
to VMs was low, but it was significantly high for other
test cases. The time sharing of CPU resources by VMs, in
case of over allocation, could be the possible reason. That
why, there was no or very small time sharing in balance
allocation. Moreover, time sharing increases the number of
context switches among VMs. The overhead due to excessive
context switching between VMs and NUMA processors affin-
ity will result performance reduction and CPU cycle will be
wasted instead of being utilized by the VMs. After further
analysis, higher performance implication of over allocation
was observed in 6, 8, and 12 VMs tests cases as compare
to the other test case (1,2, and 4). In addition to this, the CPU
utilization for Citrix xenServer and KVM are given in Figures
7 and 8. Both figures show CPU utilization in percentage at
hypervisor level i.e., how much the VMs are using the physical
CPU resources.

C. The Significance of Over Allocation

The over allocations of vCPUs to VMs is also important
in a cloud environment. If a cloud service provider did not
use over allocation of vCPUs, they may not be able to use
all the physical cores after live migration or idle VMs. For
instance, there is one host with 24 CPU cores, and there are
two VMs running on the host and each VM has 12 vCPUs. If



one VM is migrated to another host, crashed, or become idle
then twelve physical CPU cores will not be used, although
one VM is overloaded. However, if each VM configure more
than 24 vCPUs then there would be enough vCPUs to utilize
by overloaded VM after live migration or idle VM.

To highlight the significance of over allocation of vCPUs
on performance, we performed two more experiments namely:
uniform vCPUs and non-uniform vCPU-VMs configuration.

1) Uniform vCPUs-VMs Allocation: In uniform vCPU con-
figuration, each active VM has the same number of vCPUs but
no over allocation. In this experiment, we vary the pinning
strategies and fixed the number of VMs (eight VMs), vCPUs
(i.e., each VM allocated three vCPU, total vCPUs = 8 x 3 =
24), and also fixed the number of workloads (low, medium,
and high). Two out of eight VMs will run a low workload,
two of them with medium workload while the remaining four
VMs will run the heavy workload.

Figure 9, illustrates the uniform vCPU-VM configuration for
two vCPU pinning strategies (i.e., pinning and no pining strat-
egy). In no pinning strategy, the hypervisor is free to schedule
domain’s vCPUs on any pCPUs. While pinning strategy the
hypervisor is free to schedule the DomO (hypervisor) vCPUs
on any pCPUs and other active VM’s vCPUs are statically
pinned to user defined logical CPUs.

In order to investigate the effect of vCPUs on uniform
vCPUs, we run two different experiments each with eight
VMs. The purpose of assigning different workloads to VMs,
while keeping the same vCPUs configuration, is to investigate
the effect of over allocation and pinning strategies. Figure 9,
shows that after 26 and 28 seconds (depending on pinning
strategies), the VMs having low workload become idle, due
to low workload they finished their task early as compare to
medium and high workload VMs. The other six VMs are still
busy. However, the CPU utilization level dropped from 100%
to 77% as shown in Figure 10. After 180 and 182 seconds
(depending on pinning strategies), the VMs having medium
workload become idle. Now four VMs out of eight VMs are
idle while other four are still busy due to heavy workload.
Thus, the average CPU utilization level drops to 52%. So,
there was no significant difference among pinning strategies
(i.e., pinning strategies have no effect on under allocation and
balance allocation of vCPUs-VMSs). For better CPU utilization,
the optimum vCPU-VMs configuration is needed. In the next
subsection, we will discussed the non-uniform vCPUs test
configuration by which CPU utilization and performance (in
terms of elapsed time) can be improved.

2) Non-uniform vCPUs-VMs Allocation: In non-uniform
vCPU configuration, each active VM has the same vCPUs
like uniform configuration, but we used over allocation. In
this experiment, we vary the pinning strategies and fixed the
number of vCPUs (6 vCPUs per VM), the number of VMs
(8 active VMs), and the number of workloads (low, medium,
and high). Two out of eight VMs will run a low workload,
two of them with medium workload while the remaining four
VMs will run the heavy workload. In this experiment, the
aim of over allocation of vCPUs, is to utilize all the physical
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cores after idleness of VMs. As shown in Uniform vCPUs-
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VMs Allocationin, half VMs were busy due to heavy workload
while other four VMs which have low and medium workload
became idle due to low and medium workload.

Figure 11, shows the significance of over allocation of
vCPUs and the result of two pinning stratagies. It is shown,
that after 28 and 26 seconds (depending on pinning strategies),
the VMs having low workload became idle. The other six VMs
having medium and high workload were still busy. But, this
time the CPU utilization level for no pinning strategy did not
drop from 100% as shown in Figure 12. Based on pinning
strategies, the hypervisor may or may not assign the idle
vCPUs of two idle VMs (having low workload) to VMs having
the medium and high workload while no pinning strategy
assign the idle vCPUs to medium and heavy workload VMs.
After 180 and 178 seconds (depending on pinning strategies),
the VMs having medium workload also became idle. In the
case of pinning strategy, four out of eight VMs are idle while
due to the heavy workload four VMs are still busy. In this
experiment, no pinning strategy takes the advantage of over
allocation of vCPUs, by using the free vCPUs.

In addition, the CPU utilization level for no pinning strategy
did not drop from 100% as shown in Figure 12 as compare
with Uniform vCPUs-VMs Allocation shown in Figure 10. As
a result, the performance (elapsed time) is improved and the
elapsed time to solved the N-Queens problem for the heavy
workload is minimized (i.e., almost half as compare with other
two pinning strategies). Moreover, using pinning strategy we
can not utilized the free vCPUs, because pinning strategy
restricted VMs to run on user defined vCPUs. In conclusion,
both pinning strategies have only effect on over allocation of
computing resources and it will give better performance (i.e.,
elapsed time). In addition, the higher CPU utilization can be
achieved using over allocation of vCPUs-VMs with no pinning

strategy. As a future direction, we need to investigate the effect
of pinning strategies on performance as well.

D. Hypervisors Comparison

After investigating the effect of hypervisor and vCPU on
performance. In this experiment, we compared commercial
and open source hyperviosrs. In this experiment, we vary the
number of VMs running on the top Citrix xenServer and KVM
hypervisors. We also vary the number of vCPUs allocation to
VMs as well as the workloads. As we already discussed, based
on the possible solutions to solve N-Queens problem and the
corresponding elapsed time, we chose problem size 17, 18,
and 19 as low, medium, and heavy workload.

The maximum performance (i.e., low elapsed time) can be
achieved if 100% CPU is utilized, which is one of the main
objectives of cloud computing i.e., 24 out of 24 logical CPUs
are utilized regarding our machines specification. However, we
can not run many VMs per our need, because the performance
of the system decreases with increases in number of VMs. In
order to achieved better performance (i.e., low elapsed time
to solved N-Queens problem) and maximum CPU utilization,
we need to consume all CPU cores in such a way that the
performance of the system will not be affected. Therefor,
we carried out experiments, where all the CPU cores were
allocated to active VMs.

As shown in Figures 7 and 8, physical CPUs are utilized
100%. In addition, Figure 13, depicts the effect of VMs
on performance as well as the comparison between Citrix
xenServer and KVM hyperviosr for three different workload. It
can be observed that no significant difference was identified for
each workload in either of the hypervisors. In this experiments,
the number of vCPUs were kept fixed, while the number of
workload and active VMs were varied. Furthermore, 24 out
of 24 logical CPUs were equally divided among VMs, such



as: 24 CPUs cores were assigned to one VM; 12 vCPUs, 6
vCPUs, 4 vCPUs, 3 vCPUs and 2 vCPUs were allocated to
other five test cases.

If we compare the average elapsed time of each test case
(i.e., 1 VM with 2 VMs; 2 VMs with 4 VM; 4 VMs with 8
VMs) using any workload, the average elapsed time is almost
double, although the CPU utilization level is 100%. In one
VMs test case, total available physical CPU resources (24 out
of 24 logical CPUs) are allocated to one VMs. Therefore the
total elapsed time is minimum. For two VMs test case, the
VMs time share the CPU resources such as 50% CPU is be
used by VM1 and 50% is used by VM2, therefore the elapsed
time is almost double (98% increase) by comparing with one
VM test case and so on.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the latest version of commercial
and open source hypervisors. We also analyzed the implication
of virtualization technology layer and vCPU on performance
in terms of CPU utilization. In addition, we proposed a suitable
vCPUs configuration for VMs in cloud environments. Cloud
service providers and researchers will get the benefits when
they deploy VMs in a cloud environment or evaluate open
source and commercial hypervisors.

The results obtained from this evaluation showed that com-
mercial and open source (KVM) hypervisors have similar
performance in terms of elapsed time and CPU utilization.
As per our observation, the performance of a system would
degrade by running many VMs, improper allocation of vCPUs
to VMs, or using unsuitable vCPUs-pCPUs pinning strategies.
Moreover, we have found that elapsed time increases when
there is a massive over allocation of vCPUs.

We suggested that the cloud service providers and re-
searchers should consider the effects of massive over allocation
of vCPUs and VMs when they choose deployment strategies
for better performance and best CPU resources allocation.
The obtained results from our evaluation experiments can
be validated using other commercial hypervisors (VMware,
Hyper-V, and RHV). This will aid the Cloud service providers
in choosing which hypervisor to use for their specific needs.
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